Improved Bonding of Partially Osteomyelitic Bone to Titanium Pins Owing to Biomimetic Coating of Apatite

نویسندگان

  • Hirotaka Mutsuzaki
  • Yu Sogo
  • Ayako Oyane
  • Atsuo Ito
چکیده

Increased fixation strength of the bone-pin interface is important for inhibiting pin loosening after external fixation. In a previous study, an apatite (Ap) layer was formed on anodically oxidized titanium (Ti) pins by immersing them in an infusion fluid-based supersaturated calcium phosphate solution at 37 °C for 48 h. In the present study, an Ap layer was also successfully formed using a one-step method at 25 °C for 24 h in an infusion fluid-based supersaturated calcium phosphate solution, which is clinically useful due to the immersion temperature [corrected]. After percutaneous implantation in a proximal tibial metaphysis for four weeks in rabbits (n = 20), the Ti pin coated with the Ap layer showed significantly increased extraction torque compared with that of an uncoated Ti screw even with partial osteomyelitis present, owing to dense bone formation on the Ap layer in the cortical and medullary cavity regions. When the infection status was changed from "no osteomyelitis" to "partial osteomyelitis," the extraction torque in the Ap group with "partial osteomyelitis" was almost identical to that for "no osteomyelitis" cases. These results suggest that the Ap layer formed by the room temperature process could effectively improve the fixation strength of the Ti pin for external fixation clinically even with partial osteomyelitis present.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Mutsuzaki, H., et al. Improved Bonding of Partially Osteomyelitic Bone to Titanium Pins Owing to Biomimetic Coating of Apatite. Int. J. Mol. Sci. 2013, 14, 24366–24379

Page 24366 Line 4 In a previous study, an apatite (Ap) layer was formed on anodically oxidized titanium (Ti) pins by immersing them in an infusion fluid-based supersaturated calcium phosphate solution at 37 °C for 24 h. In the present study, an Ap layer was also successfully formed using a one-step method at 25 °C for 48 h in an infusion fluid-based supersaturated calcium phosphate solution, wh...

متن کامل

UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium.

BACKGROUND Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light tr...

متن کامل

Biomimetic Deposition of Hydroxyapatite on Titanium Implant Materials

Lindahl, C. 2012. Biomimetic Deposition of Hydroxyapatite on Titanium Implant Materials. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 986. 57 pp. Uppsala. ISBN 978-91-554-8510-8. The clinical success of a bone-anchored implant is controlled by many factors such as implant shape, chemical composition, mechanic...

متن کامل

Biomimetic Apatite Coating as an Alternative to Plasma-sprayed Hydroxyapatite Coating for Promotion of Bone Apposition-the Coating Formation and in Vitro Study

Introduction: The calcium phosphate ceramics, in particular hydroxyapatite ( HA), has shown to be capable of conducting bone formation and forming a chemical bond to bone. Because of this osteoconductivity, HA ceramic has been applied in joint reconstruction in the form of coating on joint implants such as hip stems by plasma spraying technique. Direct bone apposition has been repeatedly demons...

متن کامل

Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis.

During the last few years Strontium has been shown to have beneficial effects when incorporated at certain doses in bone by stimulating bone formation. It is believed that its presence locally at the interface between an implant and bone will enhance osteointegration and therefore, ensure the longevity of a joint prosthesis. In this study we explore the possibility of incorporating Sr into nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013